Immigration, Task Specialization and Total Factor Productivity

Robert T. Remuszka

March 2025

Introduction

Immigration is central to the modern American public policy debate

- Evidence regarding effects on productivity is mixed
- Studies looking at the timing of productivity effects is limited

The Question(s)

(i) What are the short and longer-run effects of immigration on measured TFP?(ii) How do these effects depend on the skill composition of the immigrant flow and the stance of immigration policy?

Outline

Illustrative Model

► Task based framework that endogenizes TFP

(i) Reconciles contradictory evidence in literature (ii) Immigration may hurt or help factor productivity \rightarrow A "Laffer Curve" for immigration policy

Empirics

Dynamic TFP responses to immigration shocks (i) Instrumental variables + Local Projection → LPIV estimator

Next Steps

- ▶ Quantitative "Ricardo-Roy" model based on the illustrative model here
- Useful to study GE effects of migration policy

Literature

Empirics:

(i) Positive effects of immigration on TFP \rightarrow Peri (2012) + Ortega and Peri (2014a) (ii) Negative effects of immigration on TFP \rightarrow Ortega and Peri (2009) + Ortega and Peri (2014b)

Theory:

(i) Task assignment models \rightarrow Acemoglu and Autor (2011), Acemoglu and Restrepo (2019, 2018)

Methodological:

(i) Shift Share Empirical Design \rightarrow Goldsmith-Pinkham et al. (2020), Borusyak et al. (2024), Card (2001) (ii) Dynamic Effect Estimation \rightarrow Ramey (2016), Jordà (2005)

Illustrative Model

Environment

Final Good (FG) Tech. FG is produced by combining
(i) Capital K
(ii) A continuum of intermediate inputs ("tasks")

$$Y = \mathcal{K}^{ heta} \left\{ \left(\int_{0}^{1} l(i)^{
ho} di
ight)^{rac{1}{
ho}}
ight\}^{1- heta} \quad
ho \in (0,1), \quad heta \in (0,1),$$

Task Tech. Each task is produced by combining foreign-born f(i) and domestic-born d(i) labor,

$$I(i) = \alpha^{D} z^{D}(i) d(i) + \alpha^{F} z^{F}(i) f(i)$$

 $\rightarrow \alpha^{\rm D}, \alpha^{\rm F}$ parameterize absolute advantage

Final Good Problem

Fix the capital stock. FG producer takes task price p(i) as given solves

$$\max_{\{I(i)\}_{i\in[0,1]}} \left\{ K^{\theta} \left[\left(\int_{0}^{1} I(i)^{\rho} di \right)^{\frac{1}{\rho}} \right]^{1-\theta} - \int_{0}^{1} p(i)I(i) di \right\}$$

Defining $L \equiv \left(\int_{0}^{1} I(i)^{\rho} di \right)^{\frac{1}{\rho}}$, task demand is
$$I(i) = \left(\frac{1-\theta}{p(i)} \right)^{\frac{1}{1-\rho}} \left(\frac{K}{L} \right)^{\frac{\theta}{1-\rho}} L$$

Task Producer Problem

Intermediate producers act competitively and solve

$$\max_{\{d(i),f(i)\}} p(i)I(i) - w^D d(i) - w^F f(i) \quad \text{s.t.}$$
$$I(i) = \alpha^D z^D(i)d(i) + \alpha^F z^F(i)f(i)$$

Assumption: Domestic labor has comparative advantage in certain tasks, i.e.

$$\frac{z^D(i')}{z^F(i')} > \frac{z^D(i)}{z^F(i)}, \quad \text{all} \quad i' > i$$

Comparative advantage suggests foreign born and domestic born want to specialize

Task Producer Problem

Specialization implies a "cutoff" task / such that,

$$\left\{egin{array}{ll} d(i)=0 & ext{and} & f(i)>0 & ext{for} & i0 & ext{and} & f(i)=0 & ext{for} & i\geq I \end{array}
ight.$$

and

$$\begin{cases} p(i)\alpha^{F}z^{F}(i) = w^{F} & \text{for} \quad i < I\\ p(i)\alpha^{D}z^{D}(i) = w^{D} & \text{for} \quad i \ge I \end{cases}$$

No Arbitrage: Minimum unit costs are the same using either factor at cutoff I,

$$\rightarrow \frac{\alpha^D z^D(I)}{\alpha^F z^F(I)} = \frac{w^D}{w^F}$$

Simple Model - TFP and Task Allocation

With supply F of foreign born and supply D of domestic born equilibrium output (at market clearing wages) is,

$$Y = \mathcal{K}^{\theta} \left(Z(I) \left\{ \frac{\lambda(I)^{1-\rho} (\alpha^{F} F)^{\rho} + [1-\lambda(I)]^{1-\rho} (\alpha^{D} D)^{\rho} \right\}^{\frac{1}{\rho}} \right)^{1-\theta}$$
$$= \mathcal{K}^{\theta} (Z(I) L(I))^{1-\theta}$$

where

$$Z(I) = \left(\int_0^I z^F(i)^{\frac{\rho}{1-\rho}} di + \int_I^1 z^D(i)^{\frac{\rho}{1-\rho}} di\right)^{\frac{1-\rho}{\rho}}$$

and

$$\lambda(I) = \frac{\int_0^I z^F(i)^{\frac{\rho}{1-\rho}} di}{\int_0^I z^F(i)^{\frac{\rho}{1-\rho}} di + \int_I^1 z^D(i)^{\frac{\rho}{1-\rho}} di}$$

An equilibrium of the illustrative model is a set of quantities $\{I(i), d(i), f(i)\}_{i \in [0,1]}$, task prices $\{p(i)\}_{i \in [0,1]}$, factor prices $\{w^D, w^F\}$ and a cutoff task I such that (i) Final goods and labor-service producers maximize profits (ii) The markets for labor services, domestic born workers and foreign born workers clear (iii) The cutoff task I satisfies the no-arbitrage condition

Effects of Migration on TFP

Proposition (dI/dF > 0)

The measure of tasks allocated to foreign-born labor rises with supply of foreign born labor.

Proposition (Migration "Laffer Curve")

There exists a cutoff task I^* for which $dZ/dF \ge 0$ when $I \le I^*$ and $dZ/dF \le 0$ when $I \ge I^*$. This I^* is defined by $z^D(I^*)/z^F(I^*) = 1$.

A Sufficient Statistic for Policy

That Z increases iff $z^D(I)/z^F(I) < 1$,

 \rightarrow Regressing measured TFP on plausibly exogenous migration flows can yield conclusions about whether productivity stands to rise or fall following proposed migration policy

If TFP Rises for $\Delta F > 0$ $\implies I < I^*$ I.e. policy is "too tight" relative to a productivity-maximizing policy • Alternative Criterion

Let us now turn to an empirical framework that implements this test...

Measuring TFP

The log of output in state s at time t can be written,

$$\ln Y_{st} = \mathbb{E}[\ln Y_{st} | K_{st}, F_{st}, D_{st}] + u_{st}$$

Expression for output in the simple model above suggests,

$$\mathbb{E}[\ln Y_{st}|\mathcal{K}_{st}, \mathcal{F}_{st}, \mathcal{D}_{st}] = \theta \ln \mathcal{K}_{st} + \frac{1-\theta}{\rho} \ln \left(\lambda_t^{1-\rho} (\alpha^F \mathcal{F}_{st})^{\rho} + [1-\lambda_t]^{1-\rho} (\alpha^D \mathcal{D}_{st})^{\rho}\right)$$

State-Level TFP Measure

Using a panel of US states we can write

$$u_{st} = \delta_s + \gamma_t + e_{st}$$

The specification of interest is then

$$\ln Y_{st} = \delta_s + \gamma_t + \theta \ln K_{st} + \frac{1-\theta}{\rho} \ln \left(\lambda_t^{1-\rho} (\alpha^F F_{st})^\rho + [1-\lambda_t]^{1-\rho} (\alpha^D D_{st})^\rho\right) + e_{st}$$

$$\rightarrow \hat{Z}_{s,t} = \exp\left(\frac{\hat{\delta}_s + \hat{e}_{s,t}}{1 - \hat{\theta}}\right)$$

Introduction (Illustrative Model) (Empirics) (Next Steps) (Appendix

Data and Sample

GDP by State:

Source: Bureau of Economic Analysis (BEA)

Capital by State:

Constructed from:

(i) Value added by industry by state (BEA)

(ii) Fixed asset accounts by indsutry (BEA)

Foreign/Domestic Labor:

Source: ACS (Ruggles et al., 2024) for 2000-2022, CPS (Flood et al., 2024) for 1994-1999,2023,2024

Sample:

Period, 1994-2023 Full time workers (\geq 35 hours per week), Age 16+

TFP Estimates, 2019

Dynamic Effects by Local Projection

Interested in the following structural relationship

$$\hat{z}_{s,t+h} = \phi_s + \eta_t + \frac{\beta_h}{f_{s,t+1}} + v_{s,t}, \quad h = 1, 2, \dots$$

where

(i)
$$\hat{z}_{s,t+h} = \frac{\hat{Z}_{s,t+h} - \hat{Z}_{s,t}}{\hat{Z}_{s,t}}$$
,
(ii) $f_{s,t+1} = \frac{F_{s,t+1} - F_{s,t}}{L_{s,t}}$, $L_{s,t}$ is employment in state s

Identification Challenge - Illustration

Identification Challenge - Two Identities

Let m index migrant groups (Canada, Mexico, etc) and g a growth rate;

$$f_s = \sum_m x_{m,s} g_{m,s}$$

$$g_{m,s} = g_m + \tilde{g}_{m,s}$$

(i) x_{m,s} = F_{m,s}/L_s
(ii) g_m is a national growth rate (group m)
(iii) g̃_{m,s} is the s-specific growth rate

 $\tilde{g}_{m,s}$ formalizes the primary threat to identification

Shift Share Design

Instrument for f_s by replacing $g_{m,s}$ with g_m

$$f_s = \sum_m x_{m,s} g_{m,s} \implies q_s = \sum_m x_{m,s} g_m$$

Then, 2SLS suggests

$$\begin{split} f_{s,t+1} &= \phi'_s + \eta'_t + \gamma' q_{s,t+1} + e'_{s,t} \quad \text{(First Stage)} \\ \hat{z}_{s,t+h} &= \phi_s + \eta_t + \beta_h \hat{f}_{s,t+1} + v_{s,t} \quad \text{(Second Stage)} \end{split}$$

Instrument Construction: Use lagged shares,

$$q_{s,t+1} = \sum_{m} x_{m,s,t-1} g_{m,t+1}$$

Baseline - Immigration and TFP (First Stage) (Leave One Out) (Exclusion "Test"

Next Steps

Next Steps

Empirics:

- Implement Rotemberg decomposition in Goldsmith-Pinkham et al. (2020) see which migrant groups drive the identification
- Estimate impulse response of capital, labor and wages This will allow us to study the entire transition path and have the later quantitative model match it.
- ▶ Implement a second instrument. Public H-1B lottery data may be useful here.

Quantitative Model:

Build prototype Ricardo-Roy model. Empirical tests in this slide-deck suggest that we are below *I**. How much should we loosen migration policy to achieve *I**?

Appendix

Proof of dI/dF > 0

Proof.

Using market clearing and the no-arbitrage condition, I is implicitly defined by

$$\left(\frac{\alpha^D z^D(I)}{\alpha^F z^F(I)}\right)^{\frac{1}{1-\rho}} = \frac{F}{D} \frac{\int_I^1 z^D(i)^{\frac{\rho}{1-\rho}} di}{\int_0^I z^F(i)^{\frac{\rho}{1-\rho}} di}.$$

By inspection, an increase in F will increase the right hand side of this relation. Since this is an equilibrium condition and $z^D(I)/z^F(I)$ is assumed to increase in I, it must be that I rises to restore equality.

Existence of I^*

Proof.

Using the expression for Z(I) we have that

$$\frac{dZ}{dF} = \frac{1-\rho}{\rho} Z^{1-\frac{\rho}{1-\rho}} \left(\frac{dI}{dF}\right) \left(z^{F}(I)^{\frac{\rho}{1-\rho}} - z^{D}(I)^{\frac{\rho}{1-\rho}}\right)$$

Since $dI/dF \ge 0$ it follows that TFP rises when

$$z^D(I)/z^F(I) \leq 1.$$

◀ Return

Optimal Migration Policy

Let lower case letters denote per-capita terms and tildes denote policy variables. Then $\tilde{N} = D + \tilde{F}$. Policy makers put weight $\theta \in [0, 1]$ on domestic residents and solve

$$\begin{split} \max_{\tilde{f}} & \theta w^{D} \tilde{d} + (1-\theta) w^{F} \tilde{f} \quad \text{s.t.} \\ \tilde{d} \equiv D/\tilde{N}, \quad \tilde{f} \equiv \tilde{F}/\tilde{N}, \quad \tilde{f} \leq f, \quad f \equiv F/N, \quad 1 = \tilde{d} + \tilde{f} \\ \tilde{y} &= \tilde{k}^{\theta} \left(Z(I) \left\{ \lambda(I)^{1-\rho} (\alpha^{F} \tilde{f})^{\rho} + [1-\lambda(I)]^{1-\rho} (\alpha^{D} \tilde{d})^{\rho} \right\}^{\frac{1}{\rho}} \right)^{1-\theta} \\ \tilde{y} &= w^{D} \tilde{d} + w^{F} \tilde{f} \\ Z(I) &= \int_{0}^{I} z(i)^{F \frac{\rho}{1-\rho}} di + \int_{I}^{1} z(i)^{D \frac{\rho}{1-\rho}} di \\ \left(\frac{\alpha^{D} z^{D}(I)}{\alpha^{F} z^{F}(I)} \right)^{\frac{1}{1-\rho}} &= \frac{\tilde{f}}{\tilde{d}} \frac{\int_{I}^{1} z^{D}(i)^{\frac{\rho}{1-\rho}} di}{\int_{0}^{I} z^{F}(i)^{\frac{\rho}{1-\rho}} di} \end{split}$$

TFP Regressions - First Stage TFP Regressions

"Test" of Exclusion Restriction • TFP Regressions

TFP Regressions - Leave One Out Instrument TFP Regressions

References I

- Acemoglu, D. and Autor, D. (2011). Skills, Tasks and Technologies: Implications for Employment and Earnings. *Handbook of Labor Economics*.
- Acemoglu, D. and Restrepo, P. (2018). The Race Between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment. *American Economic Review*, 108(6):1488–1542.
- Acemoglu, D. and Restrepo, P. (2019). Automation and New Tasks: How Technology Displaces and Reinstates Labor. *Journal of Economic Perspectives*, 33(2):3–30.
- Borusyak, K., Hull, P., and Jaravel, X. (2024). A Practical Guide to Shift-Share Instruments. Technical report, National Bureau of Economic Research.
- Card, D. (2001). Immigrant Inflows, Native Outflows, and the Local Labor Market Impacts of Higher Immigration. *Journal of Labor Economics*, 19(1):22–64.
- Flood, S., King, M., Renae, R., Ruggles, S., Warren, R. J., Backman, D., Chen, A., Cooper, G., Richards, S., Schouweiler, M., and Westberry, M. (2024). Ipums CPS: Version 12.0.

References II

- Goldsmith-Pinkham, P., Sorkin, I., and Swift, H. (2020). Bartik instruments: What, When, Why, and How. *American Economic Review*, 110(8):2586–2624.
- Jordà, Ò. (2005). Estimation and Inference of Impulse Responses by Local Projections. *American economic review*, 95(1):161–182.
- Ortega, F. and Peri, G. (2009). The Causes and Effects of International Migrations: Evidence from OECD Countries 1980-2005. Technical report, National Bureau of Economic Research.
- Ortega, F. and Peri, G. (2014a). Openness and Income: The Roles of Trade and Migration. *Journal of international Economics*, 92(2):231–251.
- Ortega, F. and Peri, G. (2014b). The Aggregate Effects of Trade and Migration: Evidence from OECD Countries. In *The socio-economic impact of migration flows: Effects on trade, remittances, output, and the labour market*, pages 19–51. Springer.
- Peri, G. (2012). The Effect of Immigration on Productivity: Evidence From US States. *Review of Economics and Statistics*, 94(1):348–358.

- Ramey, V. A. (2016). Macroeconomic Shocks and Their Propagation. *Handbook of Macroeconomics*, 2:71–162.
- Ruggles, S., Flood, S., Goeken, R., Grover, J., Meyer, E., Pacas, J., and Sobek, M. (2024). Ipums USA: Version 15.0.